Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37176963

RESUMEN

Laccase-like multi-copper oxidases (LMCOs) are a group of enzymes involved in the oxidation of numerous substrates. Recently, these enzymes have become extremely popular due to their practical applications in various fields of biology. LMCOs generally oxidize various substrates by linking four-electron reduction of the final acceptor, molecular oxygen (O2), to water. Multi-copper oxidases related to laccase are extensively distributed as multi-gene families in the genome sequences of higher plants. The current study thoroughly investigated the LMCO gene family (Br-Lac) and its expression pattern under various abiotic stresses in B. rapa L. A total of 18 Br-Lac gene family members located on five different chromosomes were identified. Phylogenetic analysis classified the documented Br-Lac genes into seven groups: Group-I (four genes), Group-II (nine genes), Group-III (eight genes), Group-IV (four genes), Group-V (six genes), and Group-VI and Group-VII (one gene each). The key features of gene structure and responsive motifs shared the utmost resemblance within the same groups. Additionally, a divergence study also assessed the evolutionary features of Br-Lac genes. The anticipated period of divergence ranged from 12.365 to 39.250 MYA (million years ago). We also identified the pivotal role of the 18 documented members of the LMCO (Br-lac) gene family using quantitative real-time qRT-PCR. Br-Lac-6, Br-Lac-7, Br-Lac-8, Br-Lac-16, Br-Lac-17, and Br-Lac-22 responded positively to abiotic stresses (i.e., drought, heat, and salinity). These findings set the stage for the functional diversity of the LMCO genes in B. rapa.

2.
Genes (Basel) ; 13(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36140688

RESUMEN

Alfalfa (Medicago sativa L.) is one of the most important perennial forage crops to build effective diets for livestock producers. Forage crop improvement depends largely on the availability of diverse germplasms and their efficient utilization. The present investigation was conducted at Ismailia Agricultural Research Station to assess twenty-one alfalfa genotypes for yield components, forage yield and quality traits during 2019/2020 and 2020/2021. The genotypes were evaluated in field experiments with three replicates and a randomized complete block design, using analysis of variance, estimate of genetic variability, estimate of broad sense heritability (hb2) and cluster analysis to identify the inter relationships among the studied genotypes as well as principal component analysis (PCA) to explain the majority of the total variation. Significant differences were found among genotypes for all studied traits. The general mean of the studied traits was higher in the second year than the first year. Moreover, the combined analysis showed highly significant differences between the two years, genotypes and the year × gen. interaction for the traits studied. The genotype F18 recorded the highest values for plant height, number of tiller/m2, total fresh yield and total dry yield, while, the genotype F49 ranked first for leaf/stem ratio. The results showed highly significant variation among the studied genotypes for crude protein %, crude fiber % and ash %. Data revealed that the genotypes P13 and P5 showed the highest values for crude protein %, whereas, the genotype F18 recorded the highest values for crude fiber % and ash content. The results revealed high estimates of genotypic coefficient and phenotypic coefficient of variation (GCV% and PCV%) with high hb2, indicating the presence of genetic variability and effective potential selection for these traits. The cluster analysis exhibited considerable genetic diversity among the genotypes, which classified the twenty one genotypes of alfalfa into five sub-clusters. The genotypes F18, F49, K75, S35, P20, P5 and P13 recorded the highest values for all studied traits compared with other clusters. Furthermore, the PC analysis grouped the studied genotypes into groups and remained scattered in all four quadrants based on all studied traits. Ultimately, superior genotypes were identified can be utilized for crop improvement in future breeding schemes.


Asunto(s)
Variación Genética , Medicago sativa , Variación Genética/genética , Genotipo , Medicago sativa/genética , Fenotipo , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...